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Abstract— In recent years, the increasing prevalence of Intelli-
gent Transportation Systems with advanced technologies has led
to the emergence of many targeted forms of malware such as
ransomware, Trojans, viruses, and malicious mining programs.
And malware authors use policies like category disguise or family
obfuscation in malware components to evade detection, which
poses a great security threat to enterprises, government agencies,
and Internet users. In this paper, we propose a malware family
classification approach based on multimodal fusion and weight
self-learning. Firstly, multiple modalities of malware such as
byte, format, statistic, and semantic are fused in various ways
to generate effective features. And then, we creatively add a
weight self-learning mechanism of malware families into the
classification model, which works by continuously calculating
log-loss based on the family label and the probabilities predicted
by each feature. The approach proves to achieve excellent
classification performance on highly imbalanced malware family
datasets with high efficiency and small resource overhead, which
helps to identify and classify malware families and enhance the
efficiency of massive malware analysis in Intelligent Transporta-
tion Systems.

Index Terms— Malware family classification, multimodal
fusion, weight self-learning, imbalanced data.

I. INTRODUCTION

IN RECENT years, the development of information tech-
nology such as Artificial Intelligence and the Internet of

Things has led to the surging demand and popularity of Intelli-
gent Transportation Systems [1]. While these technologies are
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gradually being widely used and considered to revolutionize
Intelligent Transportation Systems and autonomous vehicles
[2], they also make such devices more vulnerable to hackers
and lead to a tremendous rise in the amount of malware,
thus threatening personal privacy and security. According to
AV-TEST [3], in the past five years, the total number of
registered malware increased from 719 million in 2017 to
1313 million in 2021, among which, Windows malware can
account for up to 75.74%, indicating that Portable Executable
(PE) files are still the most common manifestation of malware.
At the same time, various malware families are skyrocketing,
with ransomware, Trojans, viruses, malicious mining programs
[4], and other forms of malware emerging continuously. The
number of system intrusions, cryptojacking, and other cyber-
attacks launched based on different types of malware keeps
increasing year by year [5]. Since attackers continue to write
new types of malware and use them to launch large-scale
cyberattacks aiming at Intelligent Transportation Systems [6],
most enterprises, government agencies, and Internet users are
still under security threats from unknown malware.

In this context, PE malware detection has become the most
common issue of cybersecurity in Intelligent Transportation
Systems, and the task of PE malware family classification
has also received a lot of attention from security researchers.
On the one hand, malware from different families may use
different resources, files, ports, or other components in a
computer system, produce different malicious behaviors, and
even affect the system to different degrees, so systems usually
need to develop specific protection strategies according to
the family to which the malware belongs [7]; on the other
hand, classifying malware families can help researchers learn
the patterns of malware evolution and predict the future
evolution trend of malware families, which contributes to
better detect malware and its variants [8]. A large number
of approaches have been proposed to solve the issue of
PE malware classification, but they currently encounter two
key challenges. (1) The detection evasion techniques such as
code modification and/or obfuscation strategies employed by
malware writers, which pose a great challenge to the accuracy
of detection and identification. Malware writers have intro-
duced polymorphism in malware components in order to evade
detection by traditional security policies. Although malicious
files belonging to the same malware family have the same form
of malicious behavior, files that originally belong to the same
family look different due to the constant modification and/or
obfuscation by writers using various strategies. Nowadays,
a large amount of malware tends to protect its data, variables,
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and network communication [9] by randomizing variable or
function names and using encoding techniques such as XOR
to evade malware detection strategies. As for this type of
malware and its variants, traditional heuristic and feature-code-
based classification approaches are no longer effective and
need to be adjusted at any time, which is time-consuming and
labor-intensive. At the same time, machine learning, however,
gradually plays a significant role in the automated identifica-
tion and classification of malware with its powerful mass data
analysis and computing power. (2) The rapid development and
imbalanced distribution phenomenon of malware families in
real environments have caused concept drift (i.e., statistical
properties of target objects change in an unpredictable style
over time) [10], which is an unavoidable problem in the task
of analyzing massive malicious samples, which in turn leads
to significant performance degradation of machine learning
models. Malware belonging to different families distributes
unevenly in the current network environment, which makes it
difficult to obtain malware samples from certain families as
well. Also, as time advances, variation in the distribution of
sample classes can affect the actual classification performance
of the classification model as its accuracy-oriented designation
usually renders the classes that contain few samples to be
ignored. Nevertheless, previous studies rarely mention the
negative impact of this issue on malware family classifica-
tion. By constructing classification models for the specific
characteristics of malware families, the advantages of machine
learning techniques in this field can be better exploited.

Therefore, this paper proposes a malware family classi-
fication approach based on multimodal fusion and weight
self-learning, aiming to solve the above-mentioned problems
encountered in the malware family classification task by
constructing machine learning classification models according
to the characteristics of malware and its family development.
This paper makes the following contributions:

• We focus on multiple modalities such as the byte, format,
statistic, and semantic for PE malware and its disassem-
bled files, and perform feature-based multimodal fusion
in the feature engineering phase; we also apply artificial
intelligence strategies such as weighted soft voting and
multi-model integration in the model building phase to
achieve decision-based multimodal fusion, which effec-
tively solves the overfitting problem.

• We incorporate a weight self-learning mechanism for
malware families in the classification model, which is
used to automatically learn the weights of different fea-
tures for each family during the training process, and the
weights are self-learning and migratable to alleviate the
concept drift problem.

• We conducted comparative experiments on highly imbal-
anced malware family datasets. The experimental results
show that the proposed method can achieve excellent
classification performance with high efficiency and small
resource overhead.

The remainder of the paper is arranged as follows.
In Section II, we review the related works of malware detection
and classification. Section III is devoted to the approach of

malware family classification using multimodal fusion and
weight self-learning. Section IV provides the experimental
results and analysis to validate the approach. Finally, conclu-
sions and future works are drawn in Section V.

II. RELATED WORKS

The existing malware is large and diverse, and in the course
of long-term malware analysis, security analysts have tried to
consider a group of programs with enough “code overlap” to
be the same type of malware, i.e., a malware family [11]. The
emergence of this concept obviously broadens the scope of the
original malware, because, over time, malware authors often
modify or reconstruct existing malware to generate malware
variants, which have a certain “code overlap” and then con-
stitute the “malware family” together with existing malware.

Considering that machine learning techniques develop
rapidly and obtain excellent results in malware detection [12],
domestic and international research has gradually tended to
focus on the application of machine learning techniques in
malware family classification. Approaches based on machine
learning for PE malware family classification can be classi-
fied into image-based, binary-based, and disassembly-based
types according to the format of the malware files analyzed
(i.e., the input format used by the approach) [13]. Image-
based approaches perform malware family classification by
converting PE malware into image files and then applying
image classification techniques. Vasan et al. [14] proposed a
novel classifier, which converted the raw malware binaries into
color images that were used by the fine-tuned CNN architec-
ture to detect variants of malware families. Çayır et al. [7]
proposed an ensemble capsule network model based on the
bootstrap aggregating technique, which was less complex
and less sensitive to data. Binary-based approaches directly
treat PE malware as binary raw files and obtain the byte
sequences or behavioral attributes of the files through static or
dynamic analysis, based on which new classification features
are constructed. Refs. [15], [16] released labeled benchmark
datasets and corresponding open-source codes for extracting
features from the binaries for training machine learning models
to statically detect malicious Windows portable executable
files. Raff et al. [17] introduced malware detection from raw
byte sequences and built a neural network to tackle this
problem. Yang et al. [18] performed feature engineering on the
dynamic behaviors generated from PE malware and introduced
the ensemble model to integrate the recognition results from
trained multiple classifiers. Fan et al. [19] combined weighted
heterograph with GNN into malware detection tasks, which
constructed a malicious behavior graph to represent the asso-
ciation of malware and its behavior associated entities and
learned the semantic information carried in it. Disassembly-
based approaches need to first disassemble the PE malware
file to get the assembly file, and then construct the classifi-
cation features based on the assembly code statements in the
assembly file. Ni et al. [20] extracted the opcode sequences
from malware and encoded them with SimHash to an equal
length, which was converted to gray images and trained by
CNN to identify malware families. Chen et al. [21] extracted
the opcodes of the disassembled file of malware based on
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the label of basic block and in the next generated SimHash
value vectors of basic blocks through these opcodes and a hash
algorithm while using CNN to train the classification model
finally. Ding et al. [22] proposed a self-attention-based mal-
ware classification method by analyzing malware ASM files
to solve the malware classification on imbalanced datasets.

While image-based approaches are simple and straight-
forward, two issues impede their application: the loss of
information caused by converting malware to image files and
the interpretability of migrating image classification models to
malware analysis. Binary-based approaches have an obvious
advantage over image-based approaches in that by refining or
adjusting the input patterns and content (APIs, etc.) of the
text model, the model can better learn key information about
the malware and thus improve the classification accuracy.
However, they also encounter several challenges like dealing
with malware with large byte sequences. Disassembly-based
approaches try to restore the malware code structure and
operation process as realistically as possible to obtain better
results, but they require a large amount of prior knowledge
and processing time to conduct.

A modality is a way something happens or exists, and
every source or form of information can be called a modality.
Clearly, the application of machine learning techniques to
malware family classification is multimodal. On the basis of
our analysis of PE malware, either by transforming it into an
image, inputting it directly into a binary file, or disassembling
it, the multidimensional features made up are multimodal. Dif-
ferent modalities have different manifestations, and there may
be many different information interactions between modalities.
If the multimodal information can be reasonably processed,
correlated, and integrated, rich feature information can be
obtained, and then a more robust prediction result can be also
obtained, which is exactly multimodal fusion [23]. In order
to make the AI-enabled malware classification solutions more
effective, more and more studies have started to introduce
the concept of multimodal fusion into the malware family
classification tasks currently. Gibert et al. [24] introduced a
bimodal approach to categorize malware into families based
on deep learning by combining the byte sequence representing
the malware’s binary content and the assembly language
instructions extracted from the assembly language source
code of malware and performing automatic feature learn-
ing and classification with a convolutional neural network.
Snow et al. [25] proposed an end-to-end deep learning frame-
work for multimodel, which utilized three different deep neural
network architectures to jointly learn meaningful features
from different attributes of the malware data to improve the
performance of the model on the malware classification issue.
Li et al. [26] presented an approach based on feature fusion
and machine learning to automatically detect malicious mining
code. However, most of the current studies only explore new
data modalities aiming to improve classification accuracy or
attempt to conduct simple experiments on imbalanced datasets
[27], [28] but do not work to eliminate the negative effects
caused by inherent problems such as malware variants and
concept drift of malware families.

III. APPROACH

In this paper, we focus on various modalities such as the
byte, format, statistic, and semantic for PE malware and
its disassembly files, based on which feature engineering
(including feature extraction, feature fusion, feature selection,
etc.) for multidimensional features is carried out through static
analysis. Meanwhile, a malware family classification model
is constructed based on machine learning techniques such
as gradient boosting, weighted soft voting, and multi-model
integration, and a weight self-learning mechanism is added in
the voting decision stage for alleviating the negative impacts
of imbalanced data and concept drift and further improving the
generalization ability of the model. The general framework of
the proposed approach is shown in Fig. 1.

A. Feature Engineering

The feature engineering part consists of three steps: multi-
modal (the byte, format, statistic, semantic, etc.) based feature
extraction, feature-based multimodal fusion, and feature selec-
tion.

As for byte features, we do not need to parse the PE
file but read the PE file directly as a binary byte sequence,
on which static byte features such as byte histogram, byte
entropy histogram, and string information are extracted.

1) Byte Histogram: The byte histogram counts the number
of occurrences of values from 0 to 255 (256 integers) in the
file and is normalized by calculating the ratio of these counts
to the total number of bytes in the file, so as to obtain the
final byte feature vector.

2) Byte Entropy Histogram: The byte entropy histogram
needs initially to be set in the file with a sliding window of
2048 bytes and a step size of 1024 bytes. First, for each win-
dow, 2048 value pairs (H, X) of file entropy H and byte values
X can be obtained by pairing the entropy value with each byte
value (2048 non-unique values) within the window. Its entropy
can be calculated as Eq. 1. Then, based on the obtained value
pairs, we can draw a joint histogram about the file entropy H
and byte values X , which is used to approximately represent
their joint probability distribution p(H, X). The procedure of
generating the byte entropy histogram is shown in Fig. 2.
Finally, the distribution matrix of the histogram is spliced
into row vectors by rows and normalized similarly to the byte
histogram to obtain the final byte entropy feature vector.

H = −
n∑

i=1

P(Xi ) log(P(Xi )) (1)

where n is the number of bins that divide entropy values. For
the i th bin, Xi is the number of the byte values X contained
in the bin.

3) String Information: String information is expressed as
the statistical features of printable strings in the file, and
here we define printable strings as the strings consisting of
at least five consecutive characters in the range of 0x20 to
0x7f. For such printable strings, on the one hand, we pay
attention to their number, average length, and the total number,
entropy value, and histogram distribution (in the range of 0x20
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Fig. 1. The framework for imbalanced malware family classification using multimodal fusion and weight self-learning.

Fig. 2. Generation of byte entropy histogram.

to 0x7f, corresponding to 96 cells) of printable characters
contained. And on the other hand, some substrings with special
meanings may be derived based on existing printable strings.
For example, a string containing “C:\” may indicate a file
path, a string containing “http://” or “https://” usually indicates
a URL, a string containing “HKEY_” may indicate a registry
entry, and a string containing “MZ” usually means a code
segment like PE file executable. These special string statistics
can help us further explore the hidden attribute information in
the file. By collecting the above string statistics and making
them up together, we get the final string feature vector.

As for format features, we disassemble the PE file to get
the assembly file, and by analyzing its contents, we find
that it contains a lot of information about the structural
properties and execution logic of the PE file, from which

we extract the executable format features such as section and
import/export table.

4) Section: In an assembly file, in addition to the assembly
code that implements various logical functions, another part
is the annotation that explains file properties and code func-
tions, from which we can obtain information corresponding
to certain fields in the PE file header. First, we focus on
the statistics of the section in the file, including the number
of sections, the number of segments, the number of sections
with different exception types (section name is empty/size is
0), the number of readable/executable/writable sections, and
the presence of debugging/relocation/resource/TLS sections,
etc. Secondly, we focus on the basic attributes of a section,
including section name, section size, and a list of strings
indicating the characteristics of the section, where we refine
the information on the section size, extracting the size of
the section before alignment and the actual size of the space
occupied by the section on disk, respectively. Furthermore,
we separately extract the name of the file entry section (i.e.,
the first executable section) and the list of strings that represent
the features of that section. In addition to the simple statistical
information, we pair the values of other features with section
names and perform hashing, the results of which are joined
together to obtain the final section feature vector.
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5) Import Table: We parse for the import address table in
the annotation of the assembly file and extract the dynamic link
libraries recorded and the functions imported from each one.
And then hash the dynamic link libraries and the pairs made
up by each link library and its inclusive functions, calculate
the total number of imported functions, and finally join them
together to obtain the import table feature vector.

6) Export Table: Similar to the import table, we parse the
export address table in the annotation of the assembly file to
extract the export functions recorded and then perform hashing
to obtain the export table feature vector.

As for statistical features, we extract the readable strings
from PE files and assembly code sequences from assem-
bly files for Term Frequency-Inverse Document Frequency
(TF-IDF) [29] processing, which is applied on the principle
that the more a string or a code sequence appears in a sample
while the less it appears in all samples, the more representative
it is as for the sample.

The TF-IDF value of each element (a string or item of
sequence) is equal to multiplying the values of TF and IDF.
The TF and IDF are calculated as Eq. 2 and Eq. 3 respectively.

T Fi, j = ni, j∑
k nk, j

(2)

where T Fi, j represents the frequency of element i in sample
j ; ni, j is the times that element i emerges in sample j , and∑

k nk, j means the total amount of elements in sample j .

I DFi = log
|D|

1+ |∑ i ∈ j | (3)

where |D| is the total amount of samples, and |∑ i ∈ j |
means the number of samples containing element i . In order
to prevent the denominator from being 0, we add 1.

7) Readable Strings: Here we define readable strings as the
strings with similar patterns to English words, and on this
basis, only strings between 4 and 20 in length and containing
vowel letters are retained. Based on this rule, we extract a large
number of readable strings from the PE file samples to build a
vocabulary, and only the first 1000 words in descending order
of word frequency are considered in the vocabulary. And then
TF-IDF is applied to the set of samples to obtain a readable
string feature matrix, where the readable string feature vector
of each PE file sample corresponds to each row vector of it.

8) Assembly Code Sequences: Here we extract the opcode,
the first operand, and the subsequent annotation by the line
from the code segment in the assembly file, and then join them
together sequentially, which serves as an element to be added
to the assembly code sequence. As for the first operand, if the
opcode is “call”, it is usually the called function, from which
we eliminate the function name prefixed with “sub”, “dword”
and “unknown” and then keep it; otherwise, the operand of
register type is selected. Based on this rule, we generate an
assembly code sequence from the assembly file samples and
then use (1,3) n-gram to get a new assembly code sequence
with increasing dimensionality. The procedure for generating
assembly code sequences is shown in Fig. 3. After that,
a vocabulary can be built from the assembly code sequence
while considering only the first 1000 words in descending

order of word frequency, and then TF-IDF is applied to the
set of samples to obtain an assembly code sequence feature
matrix, where the assembly code sequence feature vector of
each assembly file sample corresponds to each row vector of it.

As for the semantic feature, similar to the assembly code
sequences in the statistical feature, we extract the “condensed”
assembly code semantics involving opcode, first operand, and
subsequent annotation by the line from the code segment in
the assembly file.

9) Assembly Code Semantics: Differ from the assembly
code sequences, we take a function as the basic unit and
abstract the semantic information of each function into a
sentence, generate a file containing the assembly code seman-
tics for each assembly file, and collect these files to build a
corpus. The procedure of generating assembly code semantics
is shown in Fig. 3. Then we use Word2Vec [30] to learn
assembly code semantics from the corpus by unsupervised
means, generate the corresponding word vectors, and train
it to obtain an assembly code semantic model that stores
the relevance vector corresponding to each assembly code
sequence word in the corpus. Then, for all the assembly code
sequence words extracted from each assembly file sample,
we obtained their relevant vectors from the assembly code
semantic model, summed and averaged them to get a new
vector, defined as the relevant vectors of that sample in the
model, i.e., the corresponding assembly code semantic feature
vectors.

10) Feature-Based Multimodal Fusion: After the extraction
of single features is completed, we consider the multimodal
fusion of some of the features for creating new features with
more classification discriminative power. This part uses a
feature-based multimodal fusion approach, i.e., concatenating
and merging between specific features to learn and exploit the
correlations and interactions between the lower-level features
of each modality [23]. First, we fuse byte features such as
byte histogram, byte entropy histogram, and string information
to obtain a completely new byte class feature. On this basis,
we set up two new ways of feature fusion based on the
preliminary prediction results of all the features mentioned
above: on the one hand, byte class feature, section feature,
and statistical features such as readable strings and assembly
code sequences are fused, where only the first 300 words in
descending order of word frequency are considered for gener-
ating the vocabulary of readable string features; on the other
hand, considering the importance of assembly code semantic
feature, we fuse it with byte class feature, section feature,
and assembly code sequence feature. Finally, we replace the
byte features with the new byte class feature and add two
newly constructed fusion features to obtain a more complete
malware family classification feature set, including the new
byte class feature, format features (such as section, import
table, and export table), statistical features (such as readable
strings and assembly code sequences), assembly code semantic
feature and two multidimensional fusion features.

11) Feature Selection: Further, we consider performing
feature selection for the features generated after TF-IDF
processing (i.e., statistical features and their constituent fused
features) [31], and here we use the tree-based evaluator
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Fig. 3. Generation of assembly code sequences and semantics.

Extremely Randomized Trees Classifier (Extra Trees Classi-
fier) [32] to calculate the importance of features and eliminate
irrelevant or redundant features based on their importance.
Extra Trees Classifier is a type of ensemble learning technique
that aggregates the results of multiple de-correlated decision
trees collected in a “forest” to output its classification result.
To perform feature selection using the evaluator, during the
construction of the forest, for each feature, the normalized total
reduction in the mathematical criteria (usually Gini Index)
used in the decision of feature of the split is computed,
which is called the Gini Importance of the feature. Then each
feature is ordered in descending order according to the Gini
Importance of each feature and the top k features are preferred.

It is noted that, with due consideration to the fact that the
sample size of each malware family in the real environment
presents an extreme imbalance, we first need to calculate the
category weights of each family before selecting features,
and then performed feature selection based on the weights
to ensure the accuracy of the classification task.

B. Model Construction

In the model construction part, we use eXtreme Gradient
Boosting (XGBoost) [33] as the base classification model,
and then further apply optimized strategies such as weight
self-learning and decision-based multimodal fusion to finally
build a feasible model for malware family classification.

1) Weight Self-Learning Mechanism: Considering that mal-
ware is still evolving in the real environment and the gen-
eration and proportion of malware families are always in a
dynamic varying pattern [34], if we can sense this change in
the network environment in real-time and self-learn the distri-
bution weights of malware families, it will help to mitigate the
performance loss of classification model caused by the concept
drift to and make it more robust at the same time.

First, we extract features from the malware samples partic-
ipating in the training based on the malware family classifica-
tion feature set obtained from the feature engineering part, feed
these features individually into the base classification model
for training, and then, in turn, use the trained model to predict
these samples to obtain the originally predicted probability
corresponding to each feature. Second, these malware samples
are grouped by their families, and for each group, the values
of log-loss are calculated based on the family label and
the probabilities predicted by each feature, and the negative

logarithmic value of each log-loss is used as the weight
of the current feature on the current family. In this way,
by collecting the latest generated malware samples with their
families in the network environment, and then continuously
updating them to the training set of the classification model to
participate in training, we are able to keep the latest weights
of malware families self-learned. Algorithm 1 summarizes the
main procedure of weight self-learning.

Algorithm 1 Weight Self-Learning
Input : A malware family classification feature set F ,

a matrix of training samples D with family
label y ∈ Nm , m is the number of families

Output: A matrix of weight Wm×s , s is the size of F
Extract features from training samples first.
for Fi ∈ F do

train Fi by XGBoost to get Model Mi ;
use Mi to predict D to obtain the probability matrix
P;
for j ← 0 to m do

get the sub matrix D j with family label j ;
calculate logloss j i = − 1

n

∑n
k=1 log(Pkj ), n is the

value of the first dimension of D j ;
if logloss j i ≥ 1 then

W ji = 0

else
W ji = − log(logloss j i)

2) Decision-Based Multimodal Fusion: Finally, we use a
decision-based multimodal fusion approach, which allows us
to use different models for each modality since different mod-
els can better model each individual modality, thus making the
prediction more flexible [23], [35]. Decision-based multimodal
fusion consists of two steps: weighted soft voting and multi-
model integration.

After obtaining the above weights, we first multiply the
predicted probabilities of each model by the corresponding
weights and then add them to obtain the new predicted
probabilities. For each sample, we identify the class with the
largest probability after summation as the sample family (i.e.,
the voting result), and then select the result with the predicted
result consistent with the voting result and the largest predicted
probability from all models participating in the voting as the
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TABLE I

FAMILY DISTRIBUTION IN THE TRAINING SET OF CCF BDCI-21

final prediction result for that sample, thus completing the
weighted soft voting process.

For each feature in the malware family classification feature
set, after calculating its original predicted probability and
weight on each family, we first selected the following four
sets of features for the weighted soft voting process to obtain
the predicted probabilities of the corresponding models.

• Byte class feature, format features such as section, import
table and export table.

• Section, export table, readable strings, assembly code
semantics.

• Section, export table, readable strings, the multidimen-
sional fusion features with assembly code semantics.

• Section, export table, all two multidimensional fusion
features.

Then, these four predicted probabilities are summed and
averaged to integrate the decision result of the multi-model,
so as to obtain the final predicted result in probability.

IV. EXPERIMENTS

A. Experimental Setup

1) Malware Family Datasets: The CCF BDCI-21 [36]
dataset contains 5841 malware from 10 malware families
with a size of 11.5 GB, of which the number of samples in
the training set and test set are 2919 and 2922 respectively.
Each malware sample corresponds to two types of files in the
dataset: a PE file with header information removed and an
ASM file corresponding to the PE source file generated using
the disassembly tool IDA Pro. The family distribution of the
training set is shown in Table I.

The Microsoft BIG-15 [37] dataset contains 10868 malware
samples from 9 malware families with a size of 184 GB,
of which the number of samples in the training set and test
set are 5432 and 5436 respectively. Each malware sample
corresponds to two types of files in the dataset: a BYTE file
representing the binary content of the PE file in hexadecimal
form (without PE header) and an ASM file generated using
IDA Pro. In order to better apply the proposed approach
in this paper to this dataset, we performed pre-processing
on the files in the dataset, including converting the.bytes
files to corresponding PE files, processing the.asm files to
source files containing only assembly code and its annotation,
and re-labeling the family tags starting from 0. The family
distribution of the training set is shown in Table II.

TABLE II

FAMILY DISTRIBUTION IN THE TRAINING SET OF MICROSOFT BIG-15

2) Evaluation Metrics For Multi-Classification Issues:
Accuracy acc is the proportion of the number of correctly
classified samples to the total number of samples, which is
given as Eq. 4.

acc = T P + T N

T P + F P + T N + F N
(4)

where T P , F P , T N , and F N are the number of samples
that are true positive, false positive, true negative, and false
negative respectively.

Precision P is the proportion of samples predicted to be
positive that is actually positive, which is given as Eq. 5.
Recall R is the proportion of samples actually positive that
are predicted to be positive, which is given as Eq. 6. Macro-
Precision macro-P and Macro-Recall macro-R are averaged
after calculating the corresponding metrics for each class,
which is given as Eq. 7 and Eq. 8 respectively. Macro-F1 score
macro-F1 is based on the harmonic mean of macro-accuracy
and macro-recall, which is given as Eq. 9.

P = T P

T P + F P
(5)

R = T P

T P + F N
(6)

macro-P = 1

n

n∑

i=1

Pi (7)

macro-R = 1

n

n∑

i=1

Ri (8)

macro-F1 = 2×macro-P × macro-R

macro-P + macro-R
(9)

where n is the number of classes, Pi and Ri are the calculated
precision and recall of class i respectively.

Multi-class log-loss logloss is the negative log-likelihood
of the predicted sample given its true class, which is given as
Eq. 10.

logloss = −1

n

n∑

i=1

m∑

j=1

yi j log(pi j ) (10)

where n is the number of samples, m is the number of classes.
For yi j , when the sample i belongs to the class j , it values
1, otherwise 0. pi j is the probability that sample i belongs to
the class j .

B. Performance of Classification

In this part, we conduct multiple sets of comparison experi-
ments on two datasets, CCF BDCI-21 and Microsoft BIG-15,
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TABLE III

CLASSIFICATION PERFORMANCE OF SINGLE FEATURES

TABLE IV

CLASSIFICATION PERFORMANCE OF FUSED FEATURES

to evaluate the classification performance of the approach
described in this paper, and validate its effectiveness in mal-
ware family classification tasks from the perspectives of both
feature and model [38].

1) Effectiveness of Features: From Section III-A, we can
learn that the approach proposed in this paper targets PE mal-
ware and its disassembly file, focusing on multiple modalities
such as the byte, format, statistic, and semantic, based on
which multi-dimensional feature-oriented feature engineering
(including feature extraction, feature fusion, and feature selec-
tion, etc.) is performed based on static analysis. In order to
verify the effectiveness of the extracted or constructed features,
two sets of comparison experiments are set up. The first set of
experiments was conducted on two malware family datasets
using single features of each modality as input features and
XGBoost as the classification model for the task, and the
performance is shown in Table III.

As shown in Table III, the assembly code sequence feature
outperforms other single features on both datasets and achieves
the best value in all evaluation metrics, indicating that the file
execution logic contained in the assembly code can distinguish
different malware families to a certain extent. At the same
time, the export table, which is missing in most of the
samples, is usually difficult to achieve the desired classification
performance when used as a separate feature input. In addition,
for the CCF BDCI-21 dataset, features reflecting PE file format
and text content, such as section and readable strings, also
perform great classification performance; for the Microsoft
BIG-15 dataset, in addition to readable strings, byte histogram
can also achieve nice classification results. The strong classi-
fication ability exhibited by these features provides a reliable
basis for feature-based multimodal fusion.

Referring to the idea of feature-based multimodal fusion, the
second set of experiments still uses the XGBoost classification
model, but carries out the classification task with different
fused features as input features, and the performance is shown
in Table IV.

As shown in Table IV, the experimental results perform
some similarity between the two datasets. On the one hand,
compared with the single byte features, the byte class feature
obtained by fusion obviously get further improvement in clas-
sification performance; on the other hand, the two new features
obtained by fusing single features with strong classification
ability both perform excellent classification performance and
are significantly better than the original single features, which
also proves that focusing on the correlation between different
modalities can highly enhance classification performance.

2) Effectiveness of Models: To verify the effectiveness of
the adopted model constructing strategies, we also designed
a set of comparison experiments. The experiments take the
malware family classification feature set defined as input
features, construct classification models with different model
constructing strategies, and carry out classification tasks on
two malware family datasets, and the performance is shown
in Table V.

As shown in Table V, by observing different decision-based
multimodal fusion methods and their experimental results,
we can obtain the following two conclusions. On the one hand,
compared to the combination of the best feature which has
the strongest classification ability (assembly code sequence)
and the base model (XGBoost), soft voting, especially the
weighted soft voting using the weight self-learning mech-
anism, is significantly helpful to improve the classification
performance, and all evaluation metrics achieve to perform
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TABLE V

CLASSIFICATION PERFORMANCE OF MODEL CONSTRUCTED STRATEGIES

TABLE VI

EFFICIENCY AND RESOURCE OVERHEAD OF FEATURES

extremely well. On the other hand, after combining the
weighted soft voting and the multi-model integration strategies
(i.e., the model constructing strategy proposed in this paper),
the value of multi-class log loss significantly reduces while
those of other metrics maintain relatively stable, indicating that
the approach described in this paper performs more robustly
and reliably in the malware family classification task.

C. Efficiency and Resource Overhead

For any effective malware family classification approach,
in addition to focusing on its classification performance, its
operational efficiency and various resource overheads during
operation should be considered to assess its feasibility and
potential value for industrial application [39]. In each set of
experiments in Section IV-B, we also obtain various metrics
reflecting efficiency and resource overhead when each feature
in the malware family classification feature set is used as
feature input respectively, including training and prediction
time of models and space size occupied by saving the trained
models. The relevant metrics are shown in Table VI.

As shown in Table VI, comparing the efficiency and
resource overhead metrics of the proposed approach on the
two datasets, it can be found that the training time of the model
increases significantly as the size of the dataset expands, and
the space occupied by saving the trained model also increases
significantly, while the prediction time of the model rarely

increases, which reflects the advantage that the approach can
maintain stable efficiency when the size of test set expands
continuously. For the malware family classification feature
set, the training time of models with byte class feature and
assembly code semantic feature as input is significantly longer
than that of other features, which implies that if the aim is
to further reduce the overall training time, a parallel training
mechanism of models can be employed and suitable acceler-
ated training techniques can be used for the aforementioned
time-consuming features.

D. Comparison With Previous Methods

To demonstrate the superiority of the proposed approach
in this paper, we investigate the existing malware family
classification methods and select several representative ones
for comparison. The dataset for comparison is Microsoft
BIG-15, and the dimensions considered include classification
performance, efficiency, and resource overhead, etc. The com-
parison is shown in Table VII.

As shown in Table VII, we selected typical malware family
classification methods from each of the image-based, binary-
based, and disassembly-based methods, and applied them to
the same dataset as the approach proposed in this paper. Our
approach, in terms of classification performance, performs
significantly better than several other methods in terms of
accuracy and macro-F1 scores, which proves to perform an
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TABLE VII

COMPARISON AMONG OUR APPROACH AND OTHERS

extremely strong ability to classify malware families. In terms
of efficiency, its prediction speed is slightly inferior to that of
raw file byte-based methods such as IMCFN and MalConv,
but still much faster than that of methods such as MCSC
that require constructing classification features. In terms of
resource overhead, the peak memory consumption during its
operation is lower, which enables it to be applied to various
types of systems while the impact on system performance can
be significantly attenuated.

V. CONCLUSION AND FUTURE DIRECTIONS

In this study, a multimodal fusion and weight self-learning
based malware family classification approach is proposed,
which achieves the family identification and classification of
malware by effectively fusing multiple modalities such as
the byte, format, statistic, and semantic of malware, while
adding the weight self-learning mechanism of malware fam-
ilies to the classification model. It has many noteworthy
advantages for both academic and industrial applications.
(1) The feature-based and decision-based multimodal fusion
approaches are used in the feature engineering and model
construction stages, respectively, which effectively solves the
overfitting problem. (2) A weight self-learning mechanism
of malware families is added to the classification model,
which is used to automatically learn the weights of different
features for each family during the training process, and
the weights are self-learning and transferable, which may
alleviate the concept drift. (3) The designed model occupies
less memory, requires less computational resources, performs
fast in parallel training, and the prediction efficiency is less
affected by the size of the sample set. From the experimental
results, the proposed approach achieves excellent classification
performance on highly imbalanced malware family datasets
and provides a feasible idea to solve the concept drift problem
to a certain extent.

In future research, we are committed to carrying out
research in the following directions. (1) To perform code-
level/core-level analysis for specific malware families (e.g.,
malicious mining programs and ransomware) or specific
devices (e.g., automated vehicles) to achieve a more targeted
detection system. (2) To consider using more feature types
(e.g., malicious behavior features) for multimodal fusion while
analyzing their impact on the classification performance of
malware families. (3) To apply the concept of adversarial
learning to the field of malware detection and classification
to explore the possibility of further improving the robustness
of malware classification models.
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