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ARTICLE INFO ABSTRACT

Keywords: Hackers increasingly tend to abuse and nefariously use cloud services by injecting malicious
Malicious mining code mining code. This malicious code can be spread through infrastructures in the cloud platforms
Mining virus and pose a great threat to users and enterprises. In this study, a method is proposed for detecting

Cloud computing
Static analysis
Ensemble learning

malicious mining code in the cloud platforms, which constructs a detection model by fusing
the Bagging and Boosting algorithms. By randomly extracting samples and letting models vote
together to decide, the variance of model detection can be reduced obviously. Compared with
traditional classifiers, the proposed method can obtain higher accuracy and better robustness.
The experimental results show that, for the given dataset, the values of AUC and F1-score can
reach 0.992 and 0.987 respectively, and the standard deviation of AUC values under different
data inputs is only 0.0009.

1. Introduction

In the past few years, with the rapid popularity of cloud computing, cloud security has become one of the challenges faced by
many cloud service providers and cloud customers. The Cloud Security Alliance has conducted research on the most important security
issues in cloud computing, and released the Top Threats to Cloud Computing: Egregious Eleven.> Among them, abuse and nefarious use
of cloud services are prominent. Hackers are increasingly using legitimate cloud services to engage in illegal activities like malicious
mining, which brings great harm to cloud service providers and cloud customers. For example, in 2019, hackers tried to illegally steal
the computing power and services of Amazon Web Services (AWS) and Google Cloud to conduct large-scale cryptocurrency mining
activities. As a result, in a very short period of time, its mining business has become one of the largest data usages of AWS in terms
of quantity. At the same time, it also caused a total property loss of about $250,000 for some users who used AWS.* In addition, the
Mackeeper security center also issued a report in 2018, pointing out that there are multiple malicious container images containing
mining programs in the current popular container platform Docker Hub, and with the cumulative download amount of more than
five million times of these containers, hackers can deploy mining programs on the developer’s computer to run in the background,
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occupying a lot of resources for mining activities. The report points out that before Docker Hub officially removed these container
images, the hackers had mined as many as 544 Monroe coins and obtained direct economic benefits equivalent to $90,000.°

In fact, cloud services are being subjected to more and more attacks based on malicious mining codes. Kaspersky laboratory’s
detection system reported that more than 1.52 million users were attacked by mining viruses in 2020, accounting for 2.49% of all
attacks and 13.82% of high-risk programs.® In addition, the Rising cloud security system reported that a total of 9.22 million mining
virus samples were intercepted in 2020, which increased by 332.32% compared with the same period in 2019.”

The rise of malicious mining code can be attributed to the following three reasons. (1) Value-added and anonymity of virtual
currency. In recent years, the price of various types of digital cryptocurrencies has skyrocketed. According to the statistics of
Coinmarketcap,® in 2020, the price of bitcoin once exceeded $50,000 per BTC, and its market value reached the highest point in
history — $920 billion, which is ten times that at the end of 2019. At the same time, Monroe coin, which is recognized as the only
digital cryptocurrency that cannot be traced at present, has also increased nearly six times in price in the same period, which makes
the intrusion into the network through malicious mining code become more and more sought after by cybercriminals. (2) Operability
and low cost of mining technology. At present, most hackers tend to use open-source programs, register a wallet address, and then
they can easily perform mining activities and obtain great profit, which makes it almost unnecessary for cybercriminals to invest too
much energy into it. (3) Emerging in endlessly and easy-exploited system-level vulnerabilities. RCE vulnerability permits hackers to
inject operating system commands or malicious codes directly into the background server to control the background system, which
has become the most commonly used intrusion channel of mining Trojans. For example, ZOminer, a mining Trojan gang, used the
unauthorized Command Execution Vulnerability of Weblogic (CVE-2020-14882/14883) to attack, and the time of launching the
attack was only 15 days after the official security announcement of Weblogic (2020.10.21). Similarly, the mining Trojan named
Runminer has attacked about 16,000 cloud servers in 2020 by using Apache Shiro deserialization vulnerability (CVE-2016-4437).°

Malicious mining code usually shows the following three characteristics in the cloud platforms: (1) Multiple ways of transmission.
Malicious mining code can be spread through vulnerability, weak password blasting, software bundling, social engineering, and
many other channels. In addition to mining modules, malicious mining code also carries worm modules with horizontal propagation
ability, which can spread wantonly through the vulnerability in the cloud servers and infect more targets. (2) Attempt to hide
harmful behaviors of profit-seeking. While malicious mining code is running, cloud customers can easily be aware of it because
that the system usually gets stuck as the code takes up a lot of resources of cloud services. Therefore, it will use technologies such
as disguising as system files and no file persistence to protect itself. Even if found by users, it will not be easily cleared, so it can
occupy available resources for a long time and obtain benefits from mining. (3) Diligent in updating. At present, most of the common
malicious mining code will be updated for a long time, such as changing the mining currency at any time, adding more ways of
transmission, and adding confusion for self-insurance.

Aiming at various security and privacy issues in the cloud computing environment, academia and industry are exploring effective
solutions. For example, according to the information of vulnerability and network environment, an evidence reasoning network
can be constructed to track events for detecting lateral movement in the cloud platforms [1]. In addition, cloud computing, fog
computing, and network things can be integrated to fulfill verifiable data deletion and flexible access control for sensitive data
[2]. However, there is still a lack of effective solutions for the abuse and nefarious use of cloud services for mining activities. It is
desirable that recent works tend to use data analysis and machine learning techniques to detect those malicious behaviors feasibly,
but the accuracy and robustness of detection also need further sufficient consideration and exploration.

Therefore, in view of the characteristics and trends of malicious mining code in the cloud platforms, a method for detecting
malicious mining code is proposed in the paper. The main contributions are as follows:

» We propose a novel and efficient method for detecting malicious mining code, which uses the ensemble learning strategy, has
accurate and efficient performance, and can be simply deployed in the cloud platforms to detect the abuse and nefarious use
of cloud service.

» We propose an effective method of feature engineering for malicious mining code. The features focus on the characteristics of
string distribution obtained through data analysis, making this method simpler and faster.

+ We devise a model for detecting malicious mining code, which implements a strategy for enhancing robustness based on
Bagging and Boosting algorithms. By randomly extracting samples and letting base models vote together to decide, the variance
of model detection can be reduced obviously.

» We conduct a series of experiments including accuracy and robustness evaluation. The experimental results demonstrate that
the proposed method outperforms all existing algorithms with a large margin.

The paper continues with Section 2, describing the related works. In Section 3 the methodology for detecting malicious mining
code is introduced. Section 4 presents the experimental analysis of the study. Conclusions and future works are drawn in Section 5.

5 https://mackeeper.com/blog/cryptojacking-invades-cloud-how-modern-containerization- trend-is-exploited- by-attackers/.
6 https://go.kaspersky.com/rs/802-1JN-240/images/KSB_statistics_2020_en.pdf.

7 http://it.rising.com.cn/dongtai/19747.html.

8 https://coinmarketcap.com/.

9 https://s.tencent.com/research/report/1257.html.
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2. Related works
2.1. Malicious mining code detection

At present, the working mechanism of malicious mining code mainly includes web mining scripts and executable mining files.
For the web mining script, when it is embedded in the web page and visited by users, the browser will parse its content and then
execute it, which will cause the browser to occupy a lot of computer resources for mining. For the executable mining file, it can be
divided into mining file that launches attacks passively or actively according to the attack types. Passive-attack mining files mean
that users cannot start mining activities until running the executable Trojan program. Many of these files are profit-inducing and
usually disguise as "urgently needed" applications like game plug-ins and activation tools, or applications that can enable users to
obtain benefits directly or indirectly like hang-up software, and Internet cafe VIP video player. While active-attack mining files are
contrary, one of the typical representatives is the botnet of mining Trojan. Specifically, hackers invade the computer and implant
the mining Trojan, and then use the invaded computer to continue to implant the mining Trojan into other computers, and finally
build the botnet.!”

Based on the working mechanisms mentioned above, a lot of methods for detecting malicious mining code have emerged, which
can be divided into traditional detection and machine learning detection. The traditional detection type refers to the detection
method based on the signature, which aims to match some key features of the malicious mining code to the known ones. For
example, Qin et al. [3] proposed a detection method for web mining scripts, which used Python regular expression matching to
identify mining JS scripts of web background code. While the detection type based on machine learning is usually applied for
the generalized malicious code (including but not limited to malicious mining code) detection, including methods of static and
dynamic analysis. Static analysis is to read the contents of the program file directly without executing the program and determine
whether the file has a malicious function by analyzing the instruction and structure of the program. Dynamic analysis is to determine
whether the file has a malicious function by analyzing the running behavior of the program file in the isolated environment (such
as simulator and sandbox) [4]. In terms of static analysis, Shabtai et al. [5] disassembled the PE file to obtain the n-gram statistical
characteristics of the file opcode to help detect unknown malware. Zhang et al. [6] proposed a method for malware detection based
on feature fusion by using CNN and BPNN to embed the features of opcode and API call, which could effectively detect malware
and its variants. Martinelli et al. [7] proposed a ML-based method to identify mobile malware, which extracted a set of features
counting the occurrences of a specific group of opcodes extracted from the code of Android apps. Li et al. [8] proposed a method
applying unsupervised learning to perform detection tasks, which was very enlightening to the tasks of malware detection and family
clustering. In terms of dynamic analysis, Ravi et al. [9] proposed a dynamic malware detection system, which could obtain Windows
API call sequence through real-time monitoring and generate classification rules by association mining algorithm for the malware
classification task. Uppal et al. [10] also carried out feature extraction and feature selection for API call sequences and constructed a
malicious code detection model based on many machine learning techniques. Duan et al. [11] implemented a DLL-based framework
through the Hidden Naive Bayes algorithm, which could classify benign and malicious processes automatically and then explain
malware behaviors at a higher semantic level. Shafiq et al. [12-15] paid more attention to the traffic generated from malware and
proposed several methods based on machine learning for malicious traffic identification. For malicious mining code, Gao et al. [16]
tried to fuse the static features of web mining script and dynamic features of mining behavior and then trained a model to detect
malicious mining code by comparing several algorithms for classification.

From the existing methods for detecting malicious mining code, the traditional detection type performs fast and has a low false-
positive rate, but it needs to rely on a large number of existing expert experience, so it can only detect the known malicious mining
code. Recently, malicious code gradually increases and performs much more complex forms, leading to machine learning techniques
having more advantages in the field of malicious code detection than traditional ones. To begin with, the static analysis method
does not need to execute files, which has a fast detection speed and does not produce malicious behavior that probably endangers
the system. General malicious codes usually call specific system functions to achieve malicious behavior, so it is easier to locate
their API features. However, mining behavior is mainly based on cryptographic operations, and its features lie in the instruction
sequences. Relatively speaking, effective feature extraction of mining code has higher requirements for analysts. While the dynamic
analysis method can deeply analyze the behavior of malicious code, which could acquire higher accuracy. However, this method
must rely on a secure execution environment and need to continuously monitor the dynamic behavior of malicious code, which will
cause a lot of computing resources to be wasted and more time-consuming. From the perspective of detection objects, the existing
methods are more focused on web mining scripts and lack effective methods for detecting executable mining files.

2.2. Model robustness

When it comes to model robustness, Huber gives three levels of interpretation from the perspective of robust statistics [17]:
(1) The model has relatively high accuracy, which is the basic requirement for a machine learning model. (2) The relatively small
deviation of the model assumption can only have a delicate impact on its performance. (3) The relatively large deviation of the model
assumption cannot have a "catastrophic" impact on its performance. Recently, as artificial intelligence and machine learning become
prevailing, the research and evaluation of model robustness have gradually become the focus of public attention. For example, Wang

10 https://zt.360.cn/1101061855.php?dtid=1101062360&did=610067442.
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et al. [18] summarized the current researches on model robustness in Al adversarial environment and gave several mainstream
research directions to improve model robustness. Zheng et al. [19] constructed a malware family classification model with higher
robustness by randomly inserting API sequences to generate simulation adversarial samples.

However, for most of the machine learning models, on the one hand, it is still a very complex nonlinear optimized process
to improve robustness by constructing adversarial samples, and there is no sufficient theoretical basis to prove that the robust
improvement achieved by this means is reliable; on the other hand, from the perspective of the model designation, we can improve
and optimize the structure of the model for the purpose of enhancing robustness, but related research work has been relatively rare
by now.

3. Malicious mining code detection method

This paper introduces a robust method for detecting malicious mining code based on ensemble learning. Firstly, the method
reads the original string by static analysis of data, extracts the features, and vectorizes the obtained features by applying the TF-IDF
algorithm combined with n-gram. After that, the method constructs a detection model by applying optimized strategies based on a
variety of ensemble learning algorithms. Finally, an accurate, stable, and efficient malicious mining code detection model can be
obtained.

3.1. Feature engineering

The dataset!! for research comes from a large number of PE programs containing malicious mining code and non-mining code
captured from the Internet, which includes 2,000 malicious mining code samples (black samples) and 4,000 non-mining code samples
(white samples). The MZ header, PE header, import and export table, and some other areas in the sample PE structure have been
erased, which indicates that dynamic analysis of the samples cannot be carried out. Nevertheless, the code instruction characteristics
of its mining function still exist, so it is effective to use the static analysis method to process the samples.

3.1.1. Data preprocessing

The idea of data preprocessing with static analysis is to treat the PE file as a kind of binary file, read the file in the form of binary
bytecode, and then decode it into the string to explore and extract features from the string level. On the one hand, for binary files,
string refers to the sequence of printable characters in the file. The string of binary files usually contains some key information,
such as commands (like HTTP and FTP) to download web resources, IP address and hostname to reveal the address information
of program connection, text to explain the purpose of binary files, the compiler that creates binary files, and the programming
language, embedded script or HTML used to write binary files. On the other hand, in addition to the common system API calls,
malicious mining code usually needs to call some non-system APIs and DLLs, so as to realize the functions such as process creation,
memory allocation, registry modification, and the printable string also reflects some mining behavior characteristics to a certain
extent. In 2020, Tencent Cloud Workload Protection captured a new mining Trojan Loggerminer that spreads and launches attacks
in the cloud host. Loggerminer features exactly that the looger string is widely used in the code as the system account name, file
path, communication domain name, etc.'” Therefore, it is feasible to explore the string information in the executable mining file to
acquire effective features, so as to quickly understand the possible situation.

3.1.2. Exploratory data analysis

Based on the above ideas, we can make statistical analysis on the string features to explore whether there are some significant
characteristics in the string distribution of malicious mining code and other codes. First of all, through the coarse-grained statistical
analysis, we can find that there are some differences between black samples and white samples in the type and quantity of strings.
The analysis results are shown in Figs. 1 and 2.

Furthermore, through fine-grained statistical analysis, we can find that there is a significant difference in the distribution of
strings between black samples and white samples. As shown in Figs. 3 and 4, malicious mining code contains more strings such as
allocation and error, while non-mining code contains more strings such as SUCCESS and registry. The analysis results also verify the
original conjecture, so we can take the string distribution information as an effective feature to distinguish malicious mining code
from other codes, and regard it as the core rule to construct the detection model.

11 https://datacon.qianxin.com/opendata/maliciouscode.
12 https://s.tencent.com/research/report/1177.html.
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3.1.3. Feature construction

For the string in the sample, this paper selects the n-gram model (a statistical language model) to process it. N-gram is to carry
out a sliding window operation on the content of the text according to the size of n bytes to construct a sequence of n-length byte
fragments. Each byte segment is called a gram. Firstly, acquire statistics of the occurrence frequency of all grams, and then filter
them according to the preset threshold, leading to the gram sequence set (that is, the feature vector space of the current text).
The n-gram model derives from the Markov hypothesis: the appearance of the nth word is only in connection with the previous n-1
word, regardless of any other word. Suppose that the sentence s in the text consists of word sequences (w;, w,, ..., w,,), and then

the probability of the sentence P(s) is the product of the probability of the appearance of each word w; in the word sequence, and
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the latter can be obtained directly from the corpus. Use n-gram to calculate the probability P(s) as Formula (1).

P(s) = P(w,w,, ..., w,,)

= P(w)P(wy|w) P(w3|wy, w1)... P(Wy | Wy s Winmpgzs -+ > Win—)

(€Y

m
= P(WI)HP(wilwi—n+1’wi—n+2’ s Wisy)
i=2

The common n-gram models are bi-gram and tri-gram, which correspond to different values of n respectively.

After the n-gram process, we get the string distribution feature of the samples, and then we vectorize it through the TF-IDF
algorithm. TF-IDF is a statistical algorithm indicating how a word matters in the documents of the corpus. We apply the principle
of TF-IDF to the string in the samples. The basic idea is that the importance of the string in the sample increases directly with the
times it emerges in the sample but decreases inversely with the times it emerges in all samples.

First, for the original string in the samples, the n-gram sequence can be obtained through the above method, and then the TF
and IDF of each string are counted respectively. The TF and IDF are calculated as Formula (2) and Formula (3) respectively.

ni,j

TF, = 2)
RN
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Where TF, ; represents the frequency of string i in sample j; n; ; is the times that string i emerges in sample j, and };, n, ; means

the total amount of strings in sample j.
|D|
1+|Yi€jl

Where |D| is the total amount of samples, and | Y i € j| means the number of samples containing string i. In order to prevent
the denominator from being 0, we add 1.

The TF-IDF value of each string is equal to multiplying the values of TF and IDF. After calculating the importance of the sample
string, we can get the string feature matrix of malicious mining code and non-mining code, which will be input into the detection
model.

To verify the effectiveness of the above feature engineering, we attempt to visualize the feature matrix through the t-SNE
algorithm. T-SNE algorithm can capture the local structure of high-dimensional data well and reduce high-dimensional data to
lower dimensions (like 2D), so as to realizing visualization [20]. The effect of feature visualization is shown in Fig. 5. It can be seen
that the above feature engineering nearly makes all the sample data points present two clusters, which indicates that the feature
engineering has achieved excellent processing results.

IDF; =log 3)

3.2. Model construction

3.2.1. Ensemble learning

Ensemble learning methods train multiple learners and combine them to solve a problem, the typical representatives among
which include Bagging and Boosting [21]. Bagging algorithm randomly extracts samples from the training dataset, uses the samples
to train the model, and finally all the models vote together to determine the predictive value. Boosting algorithm builds a series of
models and aggregates them to get a stronger learner with better performance. In the process of fitting, each model in the sequence
will pay more attention to the observation data that the previous model predicted wrong.

The learner based on ensemble learning integrates the advantages of multiple base learners and has stronger generalization ability
(that is, higher accuracy and better robustness) and parallel ability. Assuming that the error rates of base learners are mutually
independent, based on Hoeffding’s inequality, that of ensemble learner can be calculated as Formula (4).

17/2]
PHX)# ()=}, ( i ) (1-efe " < exp(—%T(l =260 ©

k=0
Among them, H(x) is the result of voting by the base learners, f(x) is the true label of x, and T is the number of base learners.
From the right end of the formula, when the amount of base learners T is enough, the total error rate tends to 0, which shows that

under certain conditions, the learner based on ensemble learning can achieve a higher accuracy as far as possible.

The enormous advantages embodied in ensemble learning provide feasible optimized strategies for solving many problems in
the network environment. For example, for web attack detection problems, combine all the results of multiple deep models by an
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ensemble learner to acquire the ultimate decision, and the web attacks can be detected accurately with lower false-positive rates
and false-negative rates [22]. Aiming at the problem of cloud computing resource prediction, perform an intelligent and effective
algorithm to integrate existing basic models, and we can obtain a higher accuracy of resource prediction in the cloud environment
[23]. For the problem of malware classification, the multi-model ensemble method can obtain higher classification accuracy [24].

3.2.2. Bias-variance decomposition

The previous part explained the related concepts of ensemble learning and the theoretical basis for improving the accuracy,
but the principle of improving the robustness still needs to be explored. Bias—variance decomposition plays a significant role in
explaining the generalization performance of learning algorithms. Bias refers to the difference between the expected output and
the true label. It measures the deviation degree between the expected prediction and the real result of the learning algorithm and
describes the fitting ability of the learning algorithm itself. Variance refers to the varied range of expected output and can measure
the variation of learning performance that is caused by the variation of the training set of the same size, so as to indicate the effect
of data disturbance [21]. Bias—variance decomposition attempts to decompose the expected generalization error of the learning
algorithm. Assuming that the noise expectation is 0, this generalization error can be represented as the sum of bias and variance.
The expression of expected generalization error E is shown in Formula (5).

E(f; D) = E[(f(x; D) — yp)*]
= Ep[(f(x; D) — F())*1 + Epl(f(x) — »)*]

Where f(x; D) represents the prediction of model f on sample x, which is obtained for training set D. y,, is the label of x in the
dataset, y is the true label of x, and f(x) is the expected prediction of model f.

Bias-variance decomposition shows that the generalization performance depends on the learning ability of algorithms, the
sufficiency of data, and the difficulty of learning tasks. Given the task, to obtain better generalization performance, we need to
make the bias smaller, so as to fully fit the data and enhance the accuracy of the model prediction. At the same time, we also need
to make the variance smaller, so that the impact of data disturbance can be smaller, and the robustness of the model can also be
improved.

The idea of bias—variance decomposition can help us better understand the complexity of the model, which is conducive to
our exploration and attempt to improve the model. According to bias—variance decomposition, Boosting is considered to focus on
reducing bias because its principle is to build a strong ensemble learner based on the learners with weak generalization performance.
When it comes to reducing variance, Bagging is preferred cause that its principle is to average the models trained on multiple groups
of randomly sampled data.

The principle of reducing variance in Bagging can be analyzed through probability theory. Suppose the mean and variance of
random variable X is u and ¢ respectively, then for N samples which are independent identically distributed, the sample mean X
is shown in Formula (6).

)

X = X, 6)

z|—
™M=

1

Further, the expectation E(X) and variance D(X) can be calculated as Formula (7) and Formula (8) respectively.
| X
EX)=— ) EX,)=
M= ; X)=u o

N 2
DU = — 2000 = % @®)

It can be seen that the expectation of the sample mean is the same as that of the sample, but the variance of the sample mean
is only % of the variance of the sample.

The principle of Bagging is to average the models trained on multiple groups of randomly sampled data. Therefore, the variance
of the model can obviously be reduced. Considering that part of the training samples extracted by Bagging may be the same, each
base model will not be completely independent. Assuming that the number of base models is M and the correlation between models
is p, the sample variance realized by the Bagging strategy is shown in Formula (9).

2
D(X):pX02+(l—p)><UM )

3.2.3. Detection model

By now, we learn that using the Boosting algorithm to construct the detection model can achieve higher accuracy by reducing the
bias. On this basis, we can take further optimized strategy, that is, using the Bagging algorithm to reduce the variance to strengthen
the robustness of the model, which contributes to reaching the bias-variance tradeoff of the model prediction. At this time, the
detection model can acquire higher accuracy and better robustness in theory. The proposed model for detecting malicious mining
code is shown in Fig. 6.

Specifically, after obtaining the input of the string feature vector, the model firstly uses the Bagging algorithm to randomly extract
training samples and then uses Boosting algorithm (like XGBoost) to carry out the actual training task of the model. The trained
model is taken as one of the sub-models, and the sub-model is used for this round of prediction. The above process is defined as a
decision cycle of the whole model detection process. According to the Bagging strategy, the sample prediction of multiple decision
cycles is completed, and we can finally acquire the result of the detection model by averaging multiple decision results.
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Fig. 6. Malicious mining code detection model.

4. Experimental results and analysis

In this section, two groups of experiments are designed to analyze the performance of traditional learners and the proposed
model fusing ensemble learning strategies on malicious mining code detection. The experimental dataset uses the malicious mining
code (black sample) and non-mining code (white sample) sample set mentioned in Section 3. The ratio of samples in the training
set and test set is 4:1, with the training set containing 1,600 black samples and 3,200 white samples, and the test set containing
400 black samples and 800 white samples, respectively.

4.1. Accuracy evaluation

The first group of experiments mainly evaluated the classification effect of different models, that is, the accuracy of detection.
AUC and F1-score were used as evaluation indicators.

AUC means the area under the ROC Curve. The process of AUC calculation is as follows: (1) Sort the samples according to the
results of the model prediction, and then predict each sample to be positive according to this order. (2) Calculate False positive
rate (FPR) and True Positive Rate (TPR) each time, and then regard them as horizontal and vertical ordinates of ROC curve. (3)
Plot the ROC curve and calculate the area under it as AUC. In real tasks, the ROC curve is usually used to study the generalization
performance, and the AUC value is a significant indicator for evaluation. TPR and FPR are calculated as Formula (10) and Formula
(11) respectively. F1-score equals a harmonic average based on Precision (P) and Recall (R), commonly used to evaluate the accuracy
of the classification model. P, R, and F1-score are calculated as Formula (12), Formula (13), and Formula (14) respectively. By getting
a higher value of AUC, we hope to train a model with a lower false-positive rate as far as possible. By getting a higher value of
F1-score, we hope to train a model with a lower false-negative rate as far as possible.

TP

TPR= ——— (10)
TP+FN
FPR= —F an
TN + FP
p= TP 12
TP+ FP
TP
__re 1
TP+FN (13)
Fl — score = 2XPXR 14)
P+R

Among them, TP, FP, TN, and FN are the number of samples that are true positive, false positive, true negative, and false
negative respectively.

In the experiment, we explored the classification accuracy of the model fusing Bagging and XGBoost algorithms. At the same time,
we discussed the optimization effect after applying the optimized strategy used in this model to the following traditional machine
learning classification models: Naive Bayes (NB), Support Vector Machine (SVM), Linear Regression (LR), K-Nearest Neighbor (KNN),
Decision Tree (DT) and Artificial Neural Network (ANN). Results of the comparison are shown in Table 1.

From Table 1 we see that the existing classifiers have significantly improved the classification effect after applying the optimized
strategy. Among them, the proposed detection model can achieve an AUC value of 0.992 and an F1-score value of 0.987 after fusing
Bagging and Boosting algorithms.
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Table 1
Comparison of model accuracy improvement.
Model Indicator
AUC AUC F1-score F1-score
(original) (optimized) (original) (optimized)
NB 0.948 0.955 0.914 0.918
LR 0.972 0.974 0.972 0.969
SVM 0.979 0.981 0.978 0.976
KNN 0.976 0.979 0.972 0.972
ANN 0.984 0.989 0.979 0.985
DT 0.984 0.991 0.979 0.982
XGBoost 0.986 0.992 0.984 0.987
ROC curve
1.05 1.05 1.05
Loy ] 100 11— )
0.951 xgb_rand_5 0.951 xgb_rand_41 0.951 xgb_rand_32
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Fig. 7. ROC curve of XGBoost under different random seeds.

4.2. Robustness evaluation

The second group of experiments mainly evaluated the robustness of different models, focusing on the variation of AUC values
under different sample data. Here we chose to compare XGBoost with the proposed model. We evaluated the robustness of the
model by training models with nine different random seeds, which represented nine rounds of different data input. In Fig. 7, the
ROC curves of all nine times for XGBoost are displayed. While the ROC curves of the proposed model under the same set of seeds
are shown in Fig. 8. Both models performed the phenomenon of AUC variation to a certain extent. This variation is specifically
shown in Fig. 9, with horizontal ordinate representing the order of random seeds and vertical ordinate representing the value of
AUC.

The results show that under the same set of seeds, the AUC values obtained by XGBoost have obvious fluctuation in the
thousandth, with the range 0.50% and the standard deviation 0.002. While the variation of AUC values is significantly alleviated
after fusing Bagging and Boosting algorithms, with the range reaching only 0.26% and the standard deviation declining to 0.0009 of
the ten-thousandth order. It means the robustness of the proposed model is improved to a certain extent after applying the optimized
strategy.

5. Conclusions and future works

The method for detecting malicious mining code proposed in this study is that firstly, the string in the executable mining file is
analyzed and the effective features are extracted, and then the detection model is constructed and trained by fusing Bagging and
Boosting ensemble learning algorithms. By randomly extracting samples and letting models vote together to decide, the variance
of model detection can be reduced obviously. The experimental results show that this detection model can get higher AUC and
Fl-score, and the variation of AUC values is more delicate under different data input, which indicates that the proposed method
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ROC curve
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Fig. 8. ROC curve of fused model under different random seeds.
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Fig. 9. AUC variation of XGBoost and fused model.

has higher accuracy and better robustness. In addition, from the perspective of static analysis, the feature engineering and model
construction process is relatively simple, and the model prediction is also efficient, which indicates that the proposed method applies

to the tasks for detecting malicious mining code in the cloud platforms.

In future work, a robust detection method based on ensemble learning, which does not rely on the file structure and working
mechanism of specific malicious code, can be applied to the detection tasks of various malicious codes such as ransomware and
Android malware [25-27]. Moreover, we also plan to evaluate the effect of this method on improving model robustness in other

issues of cybersecurity with limited data scales [28-31].
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