
Understanding Industry Perspectives of
Static Application Security Testing

(SAST) Evaluation

Yuan Li1, Peisen Yao1, Kan Yu2, Chengpeng Wang3, Yaoyang Ye1,

Song Li1, Meng Luo1, Yepang Liu4, and Kui Ren1

2

Threats to Software Security

Log4Shell Millennium Data Race Problem

Time Control Error Heartbleed Defects in Auto-stall System

Static Application Security Testing (SAST)

3

Statically analyze the source code without executing it

Static Application Security Testing (SAST)

Statically analyze the source code without executing it

How to evaluate and select SAST tools?

4

Evaluating SAST

5

Benchmark Language Size

OWASP Java 2740

Juliet Test Suite C++, Java 92980

SecuriBench-

Micro
Java 96

PointerBench Java 34

DroidBench Java 190

PTABen C/C++ 400+

Benchmark Language Size

DaCapo Java 8

Defects4J Java 17

TaintBench Java 39

ManyBugs C 9

BugsC++ C/C++ 22

SecBench.js JavaScript 19

Micro-benchmarks Real-world Benchmarks

There is still a lack of effective approaches to evaluate SASTs.

Evaluating SAST

6

Manually crafted or

automatically generated

Assess specific capabilities

Derive from real-world

programs or projects

Capture real-world complexity

Micro-benchmarks Real-world Benchmarks

Evaluation Dilemma

7

The results of current benchmarks look like “black-box”,

providing only overall recall rate and false positive rate data.

Expert D from

Ant Group

Practitioners regard current benchmarks either too simple or

biased, and tend to trust non-technical factors.

Ami et al.,

S&P’24

Practitioners find it hard to obtain accurate results from

current benchmarks due to their diverse design standards.

Miltenberger et al.,

AsiaCCS’23

Problem Statement

To bridge the gap between

8

practitioners’ expectations

and

existing benchmarks

on SAST evaluation!

Research Questions

1. Why do practitioners use SAST benchmarks and

what are their concerns about SAST evaluation goals?

2. What barriers hinder the adoption of existing SAST

benchmarks?

3. How can the effectiveness of SAST evaluation be

enhanced?

9

Methodology

Pilot Interview Interview Guide

Semi-structured

Interviews

20 Participants

Answers

Analysis

Practitioners

Recruitment

3 Practitioners 4 Themes
1

2 3

4

5

37 Unique Code

12 Key Findings

10

3 Roles

Participants

11

Role Domain

Interview Guide

12

Background Information of Participants

Reasons for Using SAST Benchmarks

Obstacles of Using SAST Benchmarks

Suggestions for Improving SAST Benchmarks

13

Findings and Implications
RQ 1: Role-specific Motivations

Roles Motivations

SAST Developer

Program Manager
Security Expert

Testing and Improvement

Marketing and Compliance
Comparison and Customization

RQ 2: Benchmark Limitations

Limitations Findings

Diagnostic Gaps Fine-grained Labels and Fault Traces

Revealing Real-world Complexity Intended Unsound Trade-offs and Deployment Complexities

Insufficient Customizability Customization Tools and Community Collaboration

RQ 3: Actionable Implications

Roles Implications

Researcher Identifying Intended Unsoundness and Measuring Deployment Robustness

Reducing Real Programs and Evaluating Incremental Analysis

Benchmark Builder Enhancing Quantitative Diversity and Prioritizing Customization

Academia-Industry Collaboration and Industry-specific Collaboration

14

Findings and Implications
RQ 1: Role-specific Motivations

Roles Motivations

SAST Developer

Program Manager
Security Expert

Testing and Improvement

Marketing and Compliance
Comparison and Customization

RQ 2: Benchmark Limitations

Limitations Findings

Diagnostic Gaps Fine-grained Labels and Fault Traces

Revealing Real-world Complexity Intended Unsound Trade-offs and Deployment Complexities

Insufficient Customizability Customization Tools and Community Collaboration

RQ 3: Actionable Implications

Roles Implications

Researcher Identifying Intended Unsoundness and Measuring Deployment Robustness

Reducing Real Programs and Evaluating Incremental Analysis

Benchmark Builder Enhancing Quantitative Diversity and Prioritizing Customization

Academia-Industry Collaboration and Industry-specific Collaboration

Why Use Benchmarks?

SAST
Developers

Program
Managers

Security
Experts

“I used OWASP to

improve Java

container handling.”

(P6)

✓ Verify functionality

✓ Improve tool

coverage

“The tool I promote

must meet industry

standards like CWE

Top 25.” (P12)

✓ Tool marketing

✓ Ensure

compliance

“I rely on

benchmarks to help

me select the best

tool I need.” (P14)

✓ Compare tools

✓ Assess

customizability

15

16

Findings and Implications
RQ 1: Role-specific Motivations

Roles Motivations

SAST Developer

Program Manager
Security Expert

Testing and Improvement

Marketing and Compliance
Comparison and Customization

RQ 2: Benchmark Limitations

Limitations Findings

Diagnostic Gaps Fine-grained Labels and Fault Traces

Revealing Real-world Complexity Intended Unsound Trade-offs and Deployment Complexities

Insufficient Customizability Customization Tools and Community Collaboration

RQ 3: Actionable Implications

Roles Implications

Researcher Identifying Intended Unsoundness and Measuring Deployment Robustness

Reducing Real Programs and Evaluating Incremental Analysis

Benchmark Builder Enhancing Quantitative Diversity and Prioritizing Customization

Academia-Industry Collaboration and Industry-specific Collaboration

Problems

Solutions

Diagnostic Gaps

17

Benchmark

Positive Negative

…

The information they need to diagnose with:

Tow-sided cases are too simple to explain the results.

Why do they

perform like this?

• Fine-grained features

• Data structure, sensitivity level

• Fault interpretation references

• Bug trace, PoC

“I find it hard to identify and reproduce

the bugs without any PoC Support.” (P16)

Enhancing Quantitative Diversity

18

Many benchmarks rely on simple

syntactic metrics.

Semantic complexity evaluation

contributes to diagnosis.

“A priori” approach​ ​: Control

semantic features during test

program generation

​​Metric Type​​ ​​Example​​ ​​Limitations​​

Syntactic
Lines of code,

Function count

Cannot measure

analysis difficulty

Semantic
Calling context

scale, Loop nesting

Requires pointer

analysis, biased

Solution!

“We can control 𝑛 when considering a

taint-style bug where the sink hides

behind the 𝑛-th iteration of a loop.” (P1)

Revealing Real-World Complexity

19

“We need to evaluate the capability of

diverse deployment contexts, which is

essential but missing widely.” (P13)

Unsoundness CSA Infer

Loop unroll times √

Call depth √ √

Callback level √

Intended unsound trade-offs

Benchmarks do not perform well in reflecting realistic intricacies.

SAST

Tool
Sound

core

20

Identifying Intended Unsoundness

Intended unsoundness is prevalent in industry-strength SAST tools.

Source ​​Description​​

Limited loop unrolling Bugs in 𝑛-th iteration may be missed

Bounded pointer analysis Fixed time/memory budget analysis

Priority-driven analysis Focus on methods like to generate taint

Soundness

✓ Improves performance

✓ Faster but potentially incomplete

✓ Better scalability

“I would like to have benchmarks that can reveal ‘tricky’

trade-offs so that I can understand and may adjust the

heuristics.” (P13)

21

Measuring Deployment Robustness

Benchmarks must assess SASTs’ ability to handle diverse contexts.

Build System Compiler
Dependency

Configuration

“Analyzing Maven-

built projects

succeeds, how about

compatibility with

alternatives?” (P4)

✓ GNU Make, Ant

✓ Bazel, Maven

“Benchmarks lack

comprehensive

coverage of compiler/IR

compatibility.” (P5)

✓ Clang vs IR

“Benchmarks must

evaluate robustness in

diverse dependency

scenarios.” (P7)

✓ Third-party libs

✓ Environment

variables

Insufficient Customizability

22

“I want to customize the benchmark and

update it, but no tools have been provided.”

(P17)

“I have the trouble to customize the

benchmark, but online solutions are mostly

either close-source or outdated.” (P18)

There is few flexible tools or flatforms to assist customization.

Benchmark is

there but not

suitable!

23

Customization and Collaboration

Subsets Variants Contribution

“OWASP lacks

customization to run

only relevant cases

(e.g., taint flows).”

(P18)

✓ Feature-specific

“Mutating benchmarks

ensures tools adapt to

new OS versions.” (P5)

✓ Case templates

“Practitioners rely on

community forums for

benchmark

troubleshooting.” (P20)

✓ Forums, conference

✓ Honors, awards
Tools/Plug-ins

24

Findings and Implications
RQ 1: Role-specific Motivations

Roles Motivations

SAST Developer

Program Manager
Security Expert

Testing and Improvement

Marketing and Compliance
Comparison and Customization

RQ 2: Benchmark Limitations

Limitations Findings

Diagnostic Gaps Fine-grained Labels and Fault Traces

Revealing Real-world Complexity Intended Unsound Trade-offs and Deployment Complexities

Insufficient Customizability Customization Tools and Community Collaboration

RQ 3: Actionable Implications

Roles Implications

Researcher Identifying Intended Unsoundness and Measuring Deployment Robustness

Reducing Real Programs and Evaluating Incremental Analysis

Benchmark Builder Enhancing Quantitative Diversity and Prioritizing Customization

Academia-Industry Collaboration and Industry-specific Collaboration

25

Reducing Real Programs

≈

It is hard to reduce large programs​​ while preserving root causes.

？

Input: large, “real” program Output: small, “same” program

“Minimal proof-of-concept

programs enable quick

algorithm/SAST validation.” (P13)

Delta debugging

SAST-specific outputs

+

26

Evaluating Incremental Analysis

Code Change Granularity

#
D

a
ta

s
e
t

“IDE real-time analysis requires

incremental checks for multi-line,

function-level, or even sub-project

changes.” (P13)

Line Project

Function

Class

Package

File

27

Findings and Implications
RQ 1: Role-specific Motivations

Roles Motivations

SAST Developer

Program Manager
Security Expert

Testing and Improvement

Marketing and Compliance
Comparison and Customization

RQ 2: Benchmark Limitations

Limitations Findings

Diagnostic Gaps Fine-grained Labels and Fault Traces

Revealing Real-world Complexity Intended Unsound Trade-offs and Deployment Complexities

Insufficient Customizability Customization Tools and Community Collaboration

RQ 3: Actionable Implications

Roles Implications

Researcher Identifying Intended Unsoundness and Measuring Deployment Robustness

Reducing Real Programs and Evaluating Incremental Analysis

Benchmark Builder Enhancing Quantitative Diversity and Prioritizing Customization

Academia-Industry Collaboration and Industry-specific Collaboration

28

1. Conduct qualitative study on industrial SAST evaluation

2. Provide insights into practitioners’ perceptions

3. Uncover deficiencies in current practice

4. Reveal directions for further evaluation

Conclusion

29

xAST Benchmark

Thank you!

Our Paper

	Slide 1: Understanding Industry Perspectives of Static Application Security Testing (SAST) Evaluation
	Slide 2: Threats to Software Security
	Slide 3: Static Application Security Testing (SAST)
	Slide 4: Static Application Security Testing (SAST)
	Slide 5: Evaluating SAST
	Slide 6: Evaluating SAST
	Slide 7: Evaluation Dilemma
	Slide 8: Problem Statement
	Slide 9: Research Questions
	Slide 10: Methodology
	Slide 11: Participants
	Slide 12: Interview Guide
	Slide 13: Findings and Implications
	Slide 14: Findings and Implications
	Slide 15: Why Use Benchmarks?
	Slide 16: Findings and Implications
	Slide 17: Diagnostic Gaps
	Slide 18: Enhancing Quantitative Diversity
	Slide 19: Revealing Real-World Complexity
	Slide 20: Identifying Intended Unsoundness
	Slide 21: Measuring Deployment Robustness
	Slide 22: Insufficient Customizability
	Slide 23: Customization and Collaboration
	Slide 24: Findings and Implications
	Slide 25: Reducing Real Programs
	Slide 26: Evaluating Incremental Analysis
	Slide 27: Findings and Implications
	Slide 28: Conclusion
	Slide 29: xAST Benchmark

